skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Hyesoon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 4, 2026
  2. Free, publicly-accessible full text available November 2, 2025
  3. Free, publicly-accessible full text available March 1, 2026
  4. CUDA is designed specifically for NVIDIA GPUs and is not compatible with non-NVIDIA devices. Enabling CUDA execution on alternative backends could greatly benefit the hardware community by fostering a more diverse software ecosystem. To address the need for portability, our objective is to develop a framework that meets key requirements, such as extensive coverage, comprehensive end-to-end support, superior performance, and hardware scalability. Existing solutions that translate CUDA source code into other high-level languages, however, fall short of these goals. In contrast to these source-to-source approaches, we present a novel framework, CuPBoP , which treats CUDA as a portable language in its own right. Compared to two commercial source-to-source solutions, CuPBoP offers a broader coverage and superior performance for the CUDA-to-CPU migration. Additionally, we evaluate the performance of CuPBoP against manually optimized CPU programs, highlighting the differences between CPU programs derived from CUDA and those that are manually optimized. Furthermore, we demonstrate the hardware scalability of CuPBoP by showcasing its successful migration of CUDA to AMD GPUs. To promote further research in this field, we have released CuPBoP as an open-source resource. 
    more » « less
  5. Autonomous drones (UAVs) have rapidly grown in popularity due to their form factor, agility, and ability to operate in harsh or hostile environments. Drone systems come in various form factors and configurations and operate under tight physical parameters. Further, it has been a significant challenge for architects and researchers to develop optimal drone designs as open-source simulation frameworks either lack the necessary capabilities to simulate a full drone flight stack or they are extremely tedious to setup with little or no maintenance or support. In this paper, we develop and present UniUAVSim, our fully open-source co-simulation framework capable of running software-in-the-loop (SITL) and hardware-in-the-loop (HITL) simulations concurrently. The paper also provides insights into the abstraction of a drone flight stack and details how these abstractions aid in creating a simulation framework which can accurately provide an optimal drone design given physical parameters and constraints. The framework was validated with real-world hardware and is available to the research community to aid in future architecture research for autonomous systems. 
    more » « less